Every Hausdorff Compactification of a Locally Compact Separable Space Is a Ga Compactification

نویسنده

  • J. VAN MILL
چکیده

1. I n t r o d u c t i o n . In [4], De Groot and Aarts constructed Hausdorff compactifications of topological spaces to obtain a new intrinsic characterization of complete regularity. These compactifications were called GA compactifications in [5] and [7]. A characterization of complete regularity was earlier given by Fr ink [3], by means of Wallman compactifications, a method which led to the intriguing problem of whether every Hausdorff compactification is a Wal lman compactification. An analogous question was posed by A. B. Paalman de Miranda ; can every Hausdorff compactification of a Tychonoff space be obtained as a G A compactification? We will give a partial answer to this question, suggesting t ha t the answer will be yes. This paper is organized as follows: in the second section we will recall the définition of G A compactifications and we will characterize the class of GA compactifications of a given topological space. Using an analogous characterization of Wallman compactifications, given by Steiner [11], it then follows t ha t every Wallman compactification is a G A compactification. In the third section we will show tha t every Hausdorff compactification of a locally compact separable space is a GA compactification. In fact we have a more general result from which this is a corollary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Compactifications with Path Connected Remainders

We prove that every separable and metrizable space admits a metrizable compactification with a remainder that is both path connected and locally path connected. This result answers a question of P. Simon. Connectedness and compactness are two fundamental topological properties. A natural question is whether a given space admits a connected (Hausdorff) compactification. This question has been st...

متن کامل

Embedding normed linear spaces into $C(X)$

‎It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$‎. ‎Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology‎, ‎which is compact by the Banach--Alaoglu theorem‎. ‎We prove that the compact Hausdorff space $X$ can ...

متن کامل

One-point extensions of locally compact paracompact spaces

A space $Y$ is called an {em extension} of a space $X$, if $Y$ contains $X$ as a dense subspace. Two extensions of $X$ are said to be {em equivalent}, if there is a homeomorphism between them which fixes $X$ point-wise. For two (equivalence classes of) extensions $Y$ and $Y'$ of $X$ let $Yleq Y'$, if there is a continuous function of $Y'$ into $Y$ which fixes $X$ point-wise. An extension $Y$ ...

متن کامل

The universal $mathcal{AIR}$- compactification of a semigroup

In this paper we establish a characterization of abelian compact Hausdorff semigroups with unique idempotent and ideal retraction property. We also introduce a function algebra on a semitopological semigroup whose associated semigroup compactification is universal withrespect to these properties.

متن کامل

On Smallest Compactification for Convergence Spaces

In this note we obtain necessary and sufficient conditions for a convergence space to have a smallest Hausdorff compactification and to have a smallest regular compactification. Introduction. A Hausdorff convergence space as defined in [1] always has a Stone-Cech compactification which can be obtained by a slight modification of the result in [3]. But in general this need not be the largest Hau...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007